Subphysiological Compressive Loading Reduces Apoptosis Following Acute Impact Injury in a Porcine Cartilage Model

نویسندگان

  • Lauren Vernon
  • Andre Abadin
  • David Wilensky
  • C.-Y. Charles Huang
  • Lee Kaplan
چکیده

BACKGROUND Acute cartilage injuries induce cell death and are associated with an increased incidence of osteoarthritis development later in life. The objective of this study was to investigate the effect of posttraumatic cyclic compressive loading on chondrocyte viability and apoptosis in porcine articular cartilage plugs. HYPOTHESIS Compressive loading of acutely injured cartilage can maintain chondrocyte viability by reducing apoptosis after a traumatic impact injury. STUDY DESIGN In vitro controlled laboratory study. LEVEL OF EVIDENCE Level 5. METHODS Each experiment compared 4 test groups: control, impact, impact with compressive loading (either 0.5 or 0.8 MPa), and no impact but compressive loading (n = 15 per group). Flat, full-thickness articular cartilage plugs were harvested from the trochlear region of porcine knees. A drop tower was utilized to introduce an impact injury. The articular plugs were subjected to two 30-minute cycles of either 0.5 or 0.8 MPa of dynamic loading. Cell viability, apoptosis, and gene expression of samples were evaluated 24 hours postimpaction. RESULTS Cell viability staining showed that 0.5 MPa of dynamic compressive loading increased cell viability compared with the impact group. Apoptotic analysis revealed a decrease in apoptotic expression in the group with 0.5 MPa of dynamic compressive loading compared with the impact group. Significantly higher caspase 3 and lower collagen II expressions were observed in impacted samples without compressive loading, compared with those with. Compressive loading of nonimpacted samples significantly increased collagen II and decreased caspase 3 expressions. CONCLUSION In this porcine in vitro model, dynamic compressive loading at subphysiological levels immediately following impact injury decreases apoptotic expression, thereby maintaining chondrocyte viability. CLINICAL RELEVANCE Therapeutic exercises could be designed to deliver subphysiological loading to the injured cartilage, thereby minimizing injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progression of Gene Expression Changes following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis

An impact injury model of early stage osteoarthritis (OA) progression was developed using a mechanical insult to an articular cartilage surface to evaluate differential gene expression changes over time and treatment. Porcine patellae with intact cartilage surfaces were randomized to one of three treatments: nonimpacted control, axial impaction (2000 N), or a shear impaction (500 N axial, with ...

متن کامل

Strain Rate during Mechanical Injury of Articular Cartilage Explants Affects the Subsequent Evolution of Cell and Matrix Damage

Introduction: Nonphysiological mechanical loading may be a contributing factor to the initiation and progression of degenerative diseases of articular cartilage such as osteoarthritis. Previous studies have shown that impact loading can give rise to the "propagation" of cell death from impacted to nonimpacted tissue regions [1], perhaps related to the release of toxic oxygen species and induced...

متن کامل

Inhibition of CDK9 prevents mechanical injury-induced inflammation, apoptosis and matrix degradation in cartilage explants.

Joint injury often leads to post-traumatic osteoarthritis (PTOA). Acute injury responses to trauma induce production of pro-inflammatory cytokines and catabolic enzymes, which promote chondrocyte apoptosis and degrade cartilage to potentiate PTOA development. Recent studies show that the rate-limiting step for transcriptional activation of injury response genes is controlled by cyclin-dependent...

متن کامل

Laboratory stresses and tractional forces on the TMJ disc surface.

The etiology of degenerative disease of the TMJ may involve fatigue produced by surface tractional forces and compressive stresses. This study tested the time-dependent effects of compressive loading and stress-field translation on TMJ disc-surface tractional forces and stresses. In laboratory experiments with 50 porcine discs, an acrylic indenter imposed 10 N static loads for 10 and 60 sec, fo...

متن کامل

In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI.

OBJECTIVES Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-depen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014